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Abstract. Toric gerbes are étale gerbes over toric Deligne-Mumford stacks
which are constructed out of suitably chosen toric data. In this paper we study

the genus 0 Gromov-Witten theory of toric gerbes. Our main result equates
the genus 0 Gromov-Witten theory of a toric gerbe with a suitable twist of the

genus 0 Gromov-Witten theory of a disjoint union of several copies of the base.

Our result can be interpreted in the context of the decomposition conjecture in
physics. The main tool used in this paper is the calculation of Gromov-Witten

theory of toric Deligne-Mumford stacks by Coates-Corti-Iritani-Tseng.

MSC 2010: 14N35, 14M25, 14A20
Keywords: Toric gerbes, Gromov-Witten theory.

1. Introduction

1.1. Weighted projective stacks. Given natural numbers a0, ..., an, consider the
C∗-action on Cn+1 given by

λ · (z0, ..., zn) := (λa0z0, ..., λ
anzn), λ ∈ C∗, (z0, ..., zn) ∈ Cn+1.

The scheme-theoretic quotient

P (a0, ..., an) := (Cn+1 \ {0})/C∗

is called a weighted projective space and is a projective variety with at worst quo-
tient singularities. It is a natural generalization of projective spaces and provides
an interesting class of toric varieties.

For r > 0, it is a basic fact that

P (ra0, ..., ran) ' P (a0, ..., an)
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as varieties. More precisely, this isomorphism is given by the map [z0, ..., zn] 7→
[zr0 , ..., z

r
n] in homogeneous coordinates.

The fact that the quotient definition of weighted projective spaces resulted in
singular varieties naturally leads to the consideration of quotients as stacks. The
stack quotient

P(a0, ..., an) := [(Cn+1 \ {0})/C∗],
called a weighted projective stack, is a nonsingular projective stack.

The isomorphism P (ra0, ..., ran)→ P (a0, ..., an) lifts to a morphism of stacks

P(ra0, ..., ran)→ P(a0, ..., an)

which is not an isomorphism of stacks. This is an example of µr-gerbes, which in
general means the following. Let G be a finite group and X be a Deligne-Mumford
stack. A G-gerbe over X can be understood as a principal BG-bundle Y→ X over
X. Here BG ' [pt/G] is the classifying stack of the finite group G. Gerbes over
Deligne-Mumford stacks for a class of Deligne-Mumford stacks which are expected
to have nice geometric properties.

Since weighted projective spaces are examples of toric varieties, we view and
study the µr-gerbe P(ra0, ..., ran)→ P(a0, ..., an) as toric gerbes.

1.2. Toric gerbes. In this paper, we study Gromov-Witten theory of toric gerbes.
The notion of toric Deligne-Mumford stacks is introduced in [6] as stacks X(Σ) nat-
urally associated to certain combinatorial data called the stacky fans Σ = (N,Σ, β).
This notion is reviewed in Section 2.1. A toric gerbe is a morphism

X(Σ)→ X(Σ′)

defined by a specific kind of morphism Σ→ Σ′ of stacky fans. Details are spelled
out in Section 2.1. According to [14] and [20], a toric gerbe X(Σ) → X(Σ′) can
be obtained as an iterated root gerbe over X(Σ′). In particular a toric gerbe is an
A-gerbe, where A is a finite abelian group.

Our study of Gromov-Witten theory of étale gerbes is inspired by the physics
paper [18]. A physics conjecture proposed in loc. cit., when applied to the toric
gerbe case, states that conformal field theories on X(Σ) are equivalent to conformal
field theories on a disjoint union of several copies of X(Σ′) twisted by certain B-field.
We will often call this the decomposition conjecture1. A more detailed discussion
on decomposition conjecture in mathematics can be found in [22].

The main results of this paper can be understood as establishing versions of this
decomposition conjecture in various contexts. At the level of Chen-Ruan orbifold
cohomology, we show that the Chen-Ruan orbifold cohomology ring of X(Σ) is
indeed isomorphic to a direct sum of copies of the Chen-Ruan orbifold cohomology
ring of X(Σ′). This is done by explicit computations using the results of [6], see
Theorem 3.3. At the level of Gromov-Witten theory we prove results equating the
genus 0 Gromov-Witten theory of X(Σ) with the genus 0 Gromov-Witten theory
of a disjoint union of several copies of X(Σ′) with suitable twists. This is done by
applying some sophisticated techniques in toric Gromov-Witten theory, including
the calculations of genus 0 Gromov-Witten theory of toric stacks [10]. We also
point out that reconstruction techniques can be used to deduces results on higher
genus Gromov-Witten theory. Details are presented in Section 4.

1It is also called gerbe duality conjecture.
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When the base is a P1-stack with at most two cyclic stack points, our results
have also been proven by P. Johnson [21] by a completely different method. The
decomposition conjecture for trivial gerbes over an arbitrary base is proven in [3].
It is also proven in genus 0 Gromov-Witten theory for root gerbes over smooth
projective varieties in [4]. Gromov-Witten theory of G-gerbes over 0-dimensional
bases of the form BQ, with Q a finite group, is studied in [22]. The decomposition
conjecture for Gromov-Witten theory of G-gerbes with trivial bands, which include
toric gerbes, has been proven in [5] and [23]. Our method for studying toric gerbes
is different and more combinatorial.

The bulk of this paper is organized as follows. We review basic properties of toric
gerbes and Gromov-Witten theory in Section 2. We prove the decomposition of
Chen-Ruan orbifold cohomology ring in Section 3. The decomposition of full genus
0 Gromov-Witten theory of toric gerbes is studied in Section 4. As an example, we
work out in Example 4.5 some details of the case of µ2-gerbe2 P(4, 6)→ P(2, 3).

1.3. Acknowledgments. The author thank D. Abramovich, A. Bayer, K. Behrend,
B. Fantechi, P. Johnson, A. Kresch, Y. Ruan and A. Vistoli for valuable discussions.
The author is also grateful to E. Andreini, T. Coates, A. Corti, H. Iritani, Y. Jiang,
and X. Tang for related collaborations.

2. Preliminaries

In this Section we discuss some background materials on toric stacks and Gromov-
Witten theory, which are used throughout this paper.

2.1. Basics on toric gerbes. Following [6], a toric Deligne-Mumford stack is de-
fined in terms of a stacky fan

Σ = (N,Σ, β),

where N is a finitely generated abelian group, Σ ⊂ NQ = N ⊗Z Q is a simplicial
fan and β : Zn → N is a map determined by the elements {b1, · · · , bn} in N . By
assumption, β has finite cokernel and the images of bi’s under the natural map
N → NQ generate the simplicial fan Σ. The toric Deligne-Mumford stack X(Σ)
associated to Σ is defined to be the quotient stack

X(Σ) := [Z/G],

where Z is the open subvariety Cn \ V(JΣ), JΣ is the irrelevant ideal of the fan,
and G is the product of an algebraic torus and a finite abelian group. The G-action
on Z is given by a group homomorphism α : G → (C∗)n, where α is obtained
by applying the functor HomZ(−,C∗) to the Gale dual β∨ : Zn → N∨ of β and
G = HomZ(N∨,C∗).

Every stacky fan Σ has an underlying reduced stacky fan Σred = (N,Σ, β),
where N := N/Ntor, β : Zn → N is the natural projection given by the vec-
tors {b1, · · · , bn} ⊆ N . With these data one gets a toric Deligne-Mumford stack

X(Σred) = [Z/G], where G = HomZ(N
∨
,C∗) and N

∨
is the Gale dual β

∨
: Zn →

N
∨

of the map β. The stack X(Σred) is a toric orbifold3, and can be obtained by
rigidifying X(Σ).

Throughout this paper, we assume that X(Σ) and X(Σred) are projective stacks.

2A reason to be interested in P(4, 6) is that it is isomorphic to the moduli stack M1,1 of

1-pointed stable curves of arithmetic genus 1.
3I.e. the generic stabilizer is trivial.
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Given a stacky fan Σ = (N,Σ, β), one can consider the set Box defined as follows.
For a cone σ ∈ Σ, define

Box(σ) :=

b ∈ N |b̄ =
∑
b̄i∈σ

aib̄i, 0 ≤ ai < 1

 ,

and set Box(Σ) :=
⋃
σ∈Σ Box(σ). We will also need the closed box of Σ, defined as

follows. For a cone σ ∈ Σ, define

Box(σ) :=

b ∈ N |b̄ =
∑
b̄i∈σ

aib̄i, 0 ≤ ai ≤ 1

 ,

and set Box(Σ) :=
⋃
σ∈Σ Box(σ).

We now come to the notion of toric gerbes. Suppose that there is a splitting of
abelian groups

N = N ′ ⊕A,
where A is a finite abelian group. We define another stacky fan Σ′ := (N ′,Σ′, β′)
where Σ′ = Σ ⊂ NQ = N ′Q and β′ : Zn → N ′ is given by the vectors {b′1, ..., b′n} ⊂ N ′
which are images of b1, ..., bn under the natural projection N → N ′. By construction
this yields a map Σ→ Σ′, which in turn induces a map

(1) X(Σ)→ X(Σ′)

between the associated toric Deligne-Mumford stacks. By the results of [14] and
[20], this map exhibits X(Σ) as an A-gerbe over X(Σ′). It can be shown (see loc.
cit) that this gerbe is a tower of root gerbes.

2.2. Basics on Gromov-Witten theory. Gromov-Witten theory for orbifold tar-
get spaces is first constructed in symplectic geometry in [8]. In algebraic geometry,
the construction is established in [1], [2]. In this Section, we review the main ingre-
dients of orbifold Gromov-Witten theory. We mostly follow the presentation of [24].
More detailed discussions of the basics of orbifold Gromov-Witten theory from the
viewpoint of Givental’s formalism can be found in e.g. [24], [13].

Let X be a smooth proper Deligne-Mumford stack with projective coarse moduli
space X. The inertia stack of X is defined as

IX := X×∆,X×X,∆ X,

where ∆ : X→ X×X is the diagonal morphism. Additively, the Chen-Ruan orbifold
cohomology of X is defined to be the cohomology of IX,

H∗CR(X,C) := H∗(IX,C).

The work [7] equips H∗CR(X,C) with a grading called the age grading, a product
called Chen-Ruan cup product, and a non-degenerate pairing called the orbifold
Poincaré pairing. These are different from the usual ones on H∗(IX,C).

Gromov-Witten invariants are constructed based on the moduli spaces of stable
maps. Let Mg,n(X, d) denote the moduli stack of n-pointed genus-g degree-d orb-
ifold stable maps to X with sections to all gerbes (see [1, Section 4.5], [24, Section
2.4]). There are evaluation maps at the marked points

evi :Mg,n(X, d)→ IX, 1 ≤ i ≤ n,
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which can be used to pull back classes fromH∗(IX,C). Let ψ̄i ∈ H2(Mg,n(X, d),Q),
1 ≤ i ≤ n denote the descendant classes, see [24, Section 2.5.1] for more details.
Let

[Mg,n(X, d)]w ∈ H∗(Mg,n(X, d),Q)

denote the weighted virtual fundamental class, see [1] and [24, Section 2.5.1] for
more details. Given classes a1, ..., an ∈ H∗(IX,C) and nonnegative integers k1, ..., kn,
we define

〈a1ψ̄
k1 , ..., anψ̄

kn〉g,n,d :=

∫
[Mg,n(X,d)]w

(ev∗1a1)ψ̄k11 ...(ev∗nan)ψ̄knn .

These are called the descendant orbifold Gromov-Witten invariants of X. We can
form generating functions for these invariants. Let t = t(z) = t0 + t1z+ t2z

2 + ... ∈
H∗(IX)[z]. Define

〈t, ..., t〉g,n,d = 〈t(ψ̄), ..., t(ψ̄)〉g,n,d :=
∑

k1,...,kn≥0

〈tk1 ψ̄k1 , ..., tkn ψ̄kn〉g,n,d.

The total descendant potential is defined to be

DX(t) := exp

∑
g≥0

~g−1FgX(t)

 ,

where

FgX(t) :=
∑

n≥0,d∈Eff(X)

Qd

n!
〈t, ..., t〉g,n,d.

Here ~ is a formal variable, and Qd is an element of the Novikov ring Λnov which is a
certain completion of the group ring C[Eff(X)] of the semi-group Eff(X) of effective
curve classes (i.e. classes in H2(X,Q) represented by images of representable maps
from complete stacky curves to X). FgX(t) is called the genus-g descendant potential.
It is regarded as a Λnov-valued formal power series in the variables tαk where

tk =
∑
α

tαkφα ∈ H∗(IX,C), k ≥ 0.

Next we describe Givental’s symplectic vector space formalism for genus 0 Gromov-
Witten theory [15], [16]. We mainly follow the presentation of [24, Section 3.1].
More details can be found in loc. cit as well as and [13] and [9].

Recall (see [24, Definition 2.5.4] that the Novikov ring Λnov is a topological ring
with an additive valuation v : Λnov \ {0} → R. Define the space of Λnov-valued
convergent Laurent series in z to be

Λnov{z, z−1} :=

{∑
n∈Z

rnz
n : rn ∈ Λnov, v(rn)→∞ as |n| → ∞

}
.

Also put

Λnov{z} :=

∑
n≥0

rnz
n : rn ∈ Λnov, v(rn)→∞ as n→∞

 ,

Λnov{z−1} :=

∑
n≤0

rnz
n : rn ∈ Λnov, v(rn)→∞ as − n→∞

 .
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Introduce the space of H∗(IX,Λnov)-valued convergent Laurent series,

HX := H∗(IX,C)⊗ Λnov{z, z−1}.

The space HX is equipped with a Λnov-valued symplectic form define by

ΩX(f, g) = Resz=0(f(−z), g(z))Xorbdz, for f, g ∈ HX,

where (−,−)Xorb denotes the orbifold Poincaré pairing on H∗(IX,C). Consider the
following polarization

HX = HX
+ ⊕HX

−,

HX
+ := H∗(IX,C)⊗ Λnov{z} and HX

− := z−1H∗(IX,C)⊗ Λnov{z−1}.
(2)

This identifies HX with HX
+ ⊕ HX?

+ , where HX?
+ is the dual Λnov-module. We can

think of HX as the cotangent bundle T ∗HX
+. Both HX

+ and HX
− are Lagrangian

subspaces with respect to ΩX.
Let {φν} ⊂ H∗(IX,C) be an additive basis consisting of homogenerous elements,

and let {φµ} ⊂ H∗(IX,C) be the orbifold Poincaré dual basis. In other words, we
have (φµ, φν)Xorb = δµν . Associated to these bases and the polarization (2) there is a
Darboux coordinate system {pµa , qνb } on (HX,ΩX). In these coordinates, a general
point in HX takes the form∑

a≥0

∑
µ

pµaφ
µ(−z)−a−1 +

∑
b≥0

∑
ν

qνb φνz
b.

Put pa =
∑
µ p

µ
aφ

µ, qb =
∑
ν q

ν
b φν , and denote

p = p(z) :=
∑
k≥0

pk(−z)−k−1 = p0(−z)−1 + p1(−z)−2 + ...;

q = q(z) :=
∑
k≥0

qkz
k = q0 + q1z + q2z

2 + ....

For t(z) ∈ HX
+ introduce a shift q(z) = t(z)− 1z called the dilaton shift.

Let Fock be the space of Λnov[[~, ~−1]]-valued formal functions in t(z) ∈ HX
+.

In other words, these are Λnov[[~, ~−1]]-valued formal power series in variables tαk
where tk =

∑
α t

α
kφα. We can interpret Fock as the space of formal functions on

HX
+ in the formal neighborhood of q = −1z. We regard the descendant potential
DX(t) as an element in Fock via the dilaton shift.

The generating function F0
X of genus-0 orbifold Gromov-Witten invariants defines

a formal germ (at the point −1z) of Lagrangian submanifold

LX := {(p,q)|p = dqF0
X} ⊂ HX = T ∗HX

+.

This is just the graph of the differential of F0
X. Equivalently LX is defined by all

equations of the form pµa =
∂F0

X

∂qµa
. By [16, Thereom 1], string and dilaton equations

and topological recursion relations imply that LX satisfies the following properties:

Theorem 2.1 (see [9], [24]). LX is the formal germ of a Lagrangian cone with
vertex at the origin such that each tangent space T to the cone is tangent to the
cone exactly along zT .
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In other words, if N is a formal neighbourhood in H of the unique geometric
point on LX, then we have the following statements, valid in the context of formal
geometry:

(a) T ∩ LX = zT ∩N ;

(b) for each f ∈ zT ∩N, the tangent space to LX at f is T ;

(c) if T = TfLX then f ∈ zT ∩N.
(3)

These statements imply that the tangent spaces T of LX are closed under multi-
plication by z. Moreover, because T/zT is isomorphic to H∗(IX,Λnov), it follows
from (3) that LX is the union of the (finite-dimensional) family of germs of (infinite-
dimensional) linear subspaces

{zT ∩N |T is a tangent space of LX}.

Definition 2.2 (see [24], Definition 3.1.2). Define the J-function JX(t, z) to be

JX(t, z) = z + t+
∑

n≥1,d∈Eff(X)

Qd

(n− 1)!

∑
k≥0, α

〈
t, ..., t, φαψ̄

k
〉

0,n,d

φα

zk+1
.

This is a formal power series in coordinates tα of t =
∑
α t

αφα ∈ H∗(IX,C) taking
values in H. Note that for each k ≥ 0, the coefficient of the z−1−k term in JX(t, z)
takes values in H∗(IX,C)⊗Λnov. The point of LX above −z+ t ∈ H+ is JX(t,−z).

The following result illustrates the importance of the J-function in genus 0
Gromov-Witten theory.

Lemma 2.3 (See [24], Lemma 3.1.3). The union of the (finite-dimensional) family

t 7→ zTJX(t,−z)LX ∩N, t in a formal neighborhood of zero in H∗(IX,C)⊗ Λnov,

of germs of linear subspaces is LX.

3. Chen-Ruan orbifold cohomology

The purpose of this Section is to study the Chen-Ruan orbifold cohomology ring
[7] of a toric gerbe X(Σ) over X(Σ′). We show that, in a suitable choice of basis, the
Chen-Ruan cohomology H∗CR(X(Σ),C) is decomposed into a direct sum of several
copies of the Chen-Ruan cohomology H∗CR(X(Σ′),C), see Theorem 3.3.

The Chen-Ruan orbifold cohomology ring of a toric Deligne-Mumford stack has
been computed4 in [6]. We recall the answer. Let M = N∗ = HomZ(N,Z) be the
dual of N . Let C[N ]Σ be the group ring of N , i.e. C[N ]Σ :=

⊕
c∈N Cyc, y is the

formal variable. A Q-grading on C[N ]Σ is defined as follows. For c ∈ N , let c̄ ∈ N
be the image of c under the natural map N → N . If c̄ =

∑
b̄i∈σ(c̄)mib̄i where σ(c̄)

is the minimal cone in Σ containing c̄ and mi are nonnegative rational numbers,
then we define

(4) deg (yc) :=
∑

b̄i∈σ(c̄)

mi.

4Strictly speaking what is computed in [6] is the orbifold Chow ring. However the computation

for Chen-Ruan orbifold cohomology ring is identical.
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Define the following multiplication on C[N ]Σ:

(5) yc1 · yc2 :=

{
yc1+c2 if there is a cone σ ∈ Σ such that c1, c2 ∈ σ ,
0 otherwise .

Let I(Σ) be the ideal in C[N ]Σ generated by the elements
∑n
i=1 θ(bi)y

bi , θ ∈ M .
Then by [6], Theorem 1.1, there is an isomorphism of Q-graded algebras:

(6) H∗CR (X(Σ),C) ∼=
C[N ]Σ

I(Σ)
.

3.1. Decomposition of Chen-Ruan cohomology. Consider the toric gerbe (1)
defined by the morphism Σ→ Σ′ of stacky fans as in Section 2.1. Since N = N ′⊕A,
an element c ∈ N has a unique decomposition c = (c′, α) with c′ ∈ N ′ and α ∈ A.
In particular we have

bi = (b′i, αi) ∈ N ′ ⊕A, 1 ≤ i ≤ n.
This defines the elements αi ∈ A, 1 ≤ i ≤ n.

Let Â be the set of isomorphism classes of irreducible representations of A. Since

A is abelian, the set Â is identified with the set of linear characters of A.

Definition 3.1. For c ∈ N , let c ∈ N be the image of c under the natural projection
N → N . Write c =

∑
bi⊂σ(c) ai(c)bi, where σ(c) is the minimal cone in Σ containing

c and ai(c) are non-negative rational numbers. For [ρ] ∈ Â denote by χρ the
associated linear character. Define

(7) yc
′,ρ :=

1

|A|

(∑
α∈A

χρ(−α) · y(c′,α)

)
· χρ

(
n∑
i=1

ai(c
′)αi

)
∈ H∗CR(X(Σ),C).

Remark 3.2. In the above equation the term χρ (
∑n
i=1 ai(c)αi) is defined to be

n∏
i=1

χρ(αi)
ai(c).

Note that there exists an integer K such that ai(c) ∈ Z[ 1
K ] for any c ∈ N . The

terms χρ(αi)
ai(c) are defined by fixing a choice of primitive K-root of 1, say ζK :=

exp(2π
√
−1/K).

For each [ρ] ∈ Â, let H∗CR(X(Σ′))[ρ] := H∗CR(X(Σ′),C). The direct sum

(8)
⊕

[ρ]∈Â

H∗CR(X(Σ′))[ρ]

inherits a structure of a Q-graded algebra from its summands. For c′ ∈ N ′ let yc
′

ρ

denote the element yc
′

in the summand H∗CR(X(Σ′))[ρ] indexed by [ρ]. Then the

degree of yc
′

ρ is defined to be the degree of yc
′

in H∗CR(X(Σ′),C). For c′1, c
′
2 ∈ N ′

and ρ1, ρ2 ∈ Â, we have that y
c′1
ρ1 · y

c′2
ρ2 = 0 if [ρ1] 6= [ρ2]. In case [ρ1] = [ρ2] = [ρ],

the product y
c′1
ρ · yc

′
2
ρ is equal to yc

′
1 · yc′2 .

Theorem 3.3. The map

(9)
⊕

[ρ]∈Â

H∗CR(X(Σ′))[ρ] −→ H∗CR(X(Σ),C), yc
′

ρ 7→ yc
′,ρ,

Albanian J. Math. 14 (2020), no. 1, 3-23
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is an isomorphism of Q-graded algebras.

Proof. We first check that this map preserves grading. By the interpretation (1) of

the age-grading in toric case, we can see that for any α ∈ A, the degree of y(c′,α) ∈
H∗CR(X(Σ),C) coincides with the degree of yc

′ ∈ H∗CR(X(Σ′),C). Therefore the

degree of yc
′,ρ ∈ H∗CR(X(Σ),C) is the same as the degree of yc

′ ∈ H∗CR(X(Σ′),C),

which is in turn the same as the degree of yc
′

ρ by the definition of grading on the
direction sum (8).

To show that this map is an algebra isomorphism, we use the presentation of the

Chen-Ruan cohomology ring (6). For [ρ] ∈ Â, we write C[N ′]Σ
′

[ρ] := C[N ′]Σ
′

and

I(Σ′)[ρ] := I(Σ). In other words,

H∗CR(X(Σ′))[ρ] ' C[N ′]Σ
′

[ρ]/I(Σ′)[ρ], C[N ′]Σ
′

[ρ] =
⊕
c′∈N ′

Cyc
′
,

and I(Σ′)[ρ] is the ideal in C[N ′]Σ[ρ] generated by the elements
∑n
i=1 θ(b

′
i)y

b′i , θ ∈M ′.
Let

MA

be the square matrix with columns and rows indexed respectively by ρ ∈ Â and
α ∈ A whose (ρ, α)-entry is χρ(−α). Clearly the matrix MA is invertible. Hence

y(c′,α) can be expressed as a linear combination of yc
′,ρ, ρ ∈ Â. Hence the map

yc
′

ρ 7→ yc
′,ρ yields a linear isomorphism

⊕
[ρ]∈Â C[N ′]Σ

′

[ρ] ' C[N ]Σ. It remains to

check the following:

Claim 3.1.1. The map yc
′

ρ 7→ yc
′,ρ is compatible with the product structure defined

by (5),

Claim 3.1.2. The map yc
′

ρ 7→ yc
′,ρ identifies the ideal

⊕
[ρ]∈Â I(Σ′)[ρ] with the

ideal I(Σ).

We first check the product structure. Let c′1, c
′
2 ∈ N ′ and [ρ1], [ρ2] ∈ Â. Then

we have

yc
′
1,ρ1 · yc

′
2,ρ2

=
1

|A|

(∑
α∈A

χρ1(−α) · y(c′1,α)

)
· χρ1

(
n∑
i=1

ai(c
′
1)αi

)
·

· 1

|A|

(∑
α′∈A

χρ2(−α′) · y(c′2,α
′)

)
· χρ2

(
n∑
i=1

ai(c
′
2)αi

)
.

(10)

If c̄′1 and c̄′2 do not lie in the same cone of Σ, then the product y(c′1,α) · y(c′2,α
′) is

always 0. Thus in this case yc
′
1,ρ1 · yc′2,ρ2 = 0.

Suppose that c̄′1 and c̄′2 lie in the same cone of Σ, then we have

y(c′1,α) · y(c′2,α
′) = y(c′1+c′2,α+α′).

The right-hand side of (10) is equal to
(11)

χρ1

(
n∑
i=1

ai(c
′
1)αi

)
χρ2

(
n∑
i=1

ai(c
′
2)αi

)
· 1

|A|2
∑
α∈A

y(c′1+c′2,α)
∑
α′∈A

χρ1(α′)χρ2(−α−α′).

albanian-j-math.com/archives/2020-01.pdf

http://albanian-j-math.com/archives/2020-01.pdf


On Gromov-Witten theory of toric gerbes 12

Since

1

|A|
∑
α′∈A

χρ1(α′)χρ2(−α−α′) =
1

|A|
χρ2(−α)

∑
α′∈A

χρ1(α′)χρ2(−α′) = χρ2(−α)δ[ρ1],[ρ2],

we find that (11) is equal to 0 unless [ρ1] = [ρ2] =: [ρ], in which case it is equal to

(12) χρ

(
n∑
i=1

ai(c
′
1)αi

)
χρ

(
n∑
i=1

ai(c
′
2)αi

)
· 1

|A|
∑
α∈A

χρ(−α)y(c′1+c′2,α).

Note also that ai(c
′
1 + c′2) = ai(c

′
1) + ai(c

′
2) since c̄′1 and c̄′2 lie in the same cone of

Σ. Hence

χρ

(
n∑
i=1

ai(c
′
1)αi

)
χρ

(
n∑
i=1

ai(c
′
2)αi

)
= χρ

(
n∑
i=1

ai(c
′
1 + c′2)αi

)
,

and (12) is equal to yc
′
1+c′2,ρ.

In summary, yc
′
1,ρ1 · yc′2,ρ2 is equal to yc

′
1+c′2,ρ if [ρ1] = [ρ2] = [ρ] and c̄′1, c̄

′
2 lie

in the same cone of Σ. Otherwise yc
′
1,ρ1 · yc′2,ρ2 = 0. Clearly this agrees with the

product y
c′1
ρ1 · y

c′2
ρ2 under the map yc

′

ρ 7→ yc
′,ρ. This proves Claim 3.1.1.

We now turn to Claim 3.1.2. Note that M = HomZ(N,Z) = HomZ(N ′,Z) = M ′.

Let θ ∈ M . Then we have θ(bi) = θ(b′i). For any ρ ∈ Â, the map yc
′

ρ 7→ yc
′,ρ takes

the relation
n∑
i=1

θ(b′i)y
b′i
ρ = 0

to the relation

(13)

n∑
i=1

θ(b′i)y
b′i,ρ = 0.

We may rewrite the left-hand side of (13) as follows:

n∑
i=1

θ(b′i)y
b′i,ρ =

n∑
i=1

θ(b′i)
1

|A|

(∑
α∈A

χρ(−α) · y(b′i,α)

)
· χρ(αi)

=

n∑
i=1

θ(b′i)
1

|A|

(∑
α∈A

χρ(−α+ αi) · y(b′i,α)

)

=

n∑
i=1

θ(b′i)
1

|A|

(∑
α∈A

χρ(−α) · y(b′i,α+αi)

)

=
1

|A|
∑
α∈A

χρ(−α)

(
y(0,α)

n∑
i=1

θ(bi)y
bi

)
,

(14)

where in the last equality we use the fact that y(b′i,α+αi) = y(b′i,αi)+(0,α), (b′i, αi) =
bi, and θ(b′i) = θ(bi). Since the matrix MA is invertible, we find that the collection

of relations (13) for all ρ ∈ Â is equivalent to the relations

y(0,α)
n∑
i=1

θ(bi)y
bi = 0, α ∈ A.
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This is clearly equivalent to the relation

(15)

n∑
i=1

θ(bi)y
bi = 0.

Claim 3.1.2 is proved. This concludes the proof of the Theorem. �

We now describe the compatibility of the map (9) with orbifold Poincaré pair-

ings. Let (−,−)
X(Σ′),[ρ]
orb := (−,−)

X(Σ′)
orb denote the orbifold Poincaré pairing on the

summand H∗CR(X(Σ′))[ρ] = H∗CR(X(Σ′),C) of (8) indexed by [ρ] ∈ Â.

Proposition 3.4. The map (9) identifies the orbifold Poincaré pairing (−,−)
X(Σ)
orb

on H∗CR(X(Σ),C) with the following non-degenerate pairing on the direct sum (8):

(16)
⊕

[ρ]∈Â

1

|A|2
(−,−)

X(Σ′),[ρ]
orb .

Proof. Let c′1, c
′
2 ∈ N ′ and [ρ1], [ρ2] ∈ Â. To prove the Proposition it suffices to

prove the following two statements:

(17) (yc
′
1,ρ1 , yc

′
2,ρ2)

X(Σ)
orb = 0 if [ρ1] 6= [ρ2];

(18) (yc
′
1,ρ, yc

′
2,ρ)

X(Σ)
orb =

1

|A|2
(yc
′
1 , yc

′
2)

X(Σ′)
orb if [ρ1] = [ρ2] = [ρ].

Properties of the Chen-Ruan cup product imply that

(yc
′
1,ρ1 , yc

′
2,ρ2)

X(Σ)
orb = (yc

′
1,ρ1 · yc

′
2,ρ2 ,1X(Σ))

X(Σ)
orb ,

where 1X(Σ) ∈ H0(X(Σ),C) is the unit class. (17) now follows from the fact (see

the proof of Claim 3.1.1) that yc
′
1,ρ1 · yc′2,ρ2 = 0 when [ρ1] 6= [ρ2].

Now suppose that [ρ1] = [ρ2] = [ρ]. Since (yc
′
1 , yc

′
2)

X(Σ′)
orb = (yc

′
1 ·yc′2 ,1X(Σ′))

X(Σ′)
orb ,

where 1X(Σ′) ∈ H0(X(Σ′),C) is the unit class, it follows that both sides of (18) are
0 unless c̄′1, c̄

′
2 belong to the same cone of Σ′. Therefore we may assume that c̄′1, c̄

′
2

belong to the same cone of Σ′. Since yc
′
1,ρ · yc′2,ρ = yc

′
1+c′2,ρ and yc

′
1 · yc′2 = yc

′
1+c′2 ,

to prove (18) it remains to show the following statement:

(19) (yc
′,ρ,1X(Σ))

X(Σ)
orb =

1

|A|2
(yc
′
,1X(Σ′))

X(Σ′)
orb , c′ ∈ N ′.

By (7), the left-hand side of (19) is

(yc
′,ρ,1X(Σ))

X(Σ)
orb =

1

|A|

(∑
α∈A

χρ(−α) · (y(c′,α),1X(Σ))
X(Σ)
orb

)
· χρ

(
n∑
i=1

ai(c
′)αi

)
.

In order for (y(c′,α),1X(Σ))
X(Σ)
orb to be non-zero, the support of the class y(c′,α)

must be contained in the untwisted sector X(Σ). In view of the identification of
H∗(X(Σ),C) in [6, Lemma 5.1], this means that (c′, α) =

∑
i nibi ∈ N for some

ni ∈ N≥0. Moreover,

(c′, α) =
∑
i

nibi =
∑
i

ni(b
′
i, αi) = (

∑
i

nib
′
i,
∑
i

niαi).
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Comparing with c̄′ =
∑
i ai(c

′)b̄′i and note that b̄i = b̄′i, we find

c′ =
∑
i

nib
′
i, ai(c

′) = ni, α =
∑
i

niαi =
∑
i

ai(c
′)αi.

Therefore

(yc
′,ρ,1X(Σ))

X(Σ)
orb

=
1

|A|
χρ

(
−
∑
i

niαi

)
· (y

∑
i nibi ,1X(Σ))

X(Σ)
orb · χρ

(
n∑
i=1

ai(c
′)αi

)

=
1

|A|
(y

∑
i nibi ,1X(Σ))

X(Σ)
orb .

Since the map X(Σ)→ X(Σ′) is of degree 1/|A|, and the classes yb
′
i ∈ H∗(X(Σ′),C)

pull back to ybi ∈ H∗(X(Σ),C) via X(Σ)→ X(Σ′), it follows that

(y
∑
i nibi ,1X(Σ))

X(Σ)
orb

=

∫
X(Σ)

y
∑
i nibi

=
1

|A|

∫
X(Σ′)

y
∑
i nib

′
i

=
1

|A|
(y

∑
i nib

′
i ,1X(Σ′))

X(Σ′)
orb ,

which proves (19). This concludes the proof of the Proposition. �

For each [ρ] ∈ Â let (HX(Σ′),ρ,ΩX(Σ′),ρ) be the symplectic space (HX(Σ′),
ΩX(Σ′)
|A|2 ).

Let LX(Σ′),ρ ⊂ HX(Σ′),ρ denote the Lagrangian cone LX(Σ′). Then Theorem 3.3
and Proposition 3.4 imply

Theorem 3.5. The isomorphism (9) yields an isomorphism of symplectic vector
spaces

(20)
⊕

[ρ]∈Â

(HX(Σ′),ρ,ΩX(Σ′),ρ)
'−→ (HX(Σ),ΩX(Σ)).

Here we identify the ground ring Λnov(X(Σ)) for HX(Σ) with the ground ring

Λnov(X(Σ′)) for HX(Σ′),ρ via Qi 7→ Qi, 1 ≤ i ≤ n.

Moreover, the isomorphism (20) identifies the direct sum
⊕

[ρ]∈ÂH
X(Σ′),ρ
+ with

HX(Σ)
+ .

The following result will be used in the next Section.

Lemma 3.6. Let ρ ∈ Â. Then for v′ ∈ N ′ we have

yv
′,ρ · ybi = yv

′,ρ · yb
′
i,ρ.
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Proof. We may assume that v̄′ and b̄′i lie in the same cone. Then

yv
′,ρ · ybi

=
1

|A|

(∑
α∈A

χρ(−α) · y(v′,α)

)
· χρ

(
n∑
i=1

ai(v
′)αi

)
· ybi

=
1

|A|

(∑
α∈A

χρ(−α) · y(v′+b′i,α+αi)

)
· χρ

(
n∑
i=1

ai(v
′)αi

)

=
1

|A|

(∑
α∈A

χρ(−α) · y(v′+b′i,α)

)
· χρ

(
n∑
i=1

ai(v
′)αi

)
χρ(αi).

(21)

yv
′,ρ · yb

′
i,ρ

=
1

|A|

(∑
α1∈A

χρ(−α1) · y(v′,α1)

)
· χρ

(
n∑
i=1

ai(v
′)αi

)
·

· 1

|A|

(∑
α2∈A

χρ(−α2) · y(b′i,α2)

)
· χρ (αi)

=
1

|A|2

 ∑
α1,α2∈A

χρ(−α1 − α2)y(v′+b′i,α1+α2)

 · χρ( n∑
i=1

ai(v
′)αi

)
· χρ (αi)

=
1

|A|

(∑
α∈A

χρ(−α) · y(v′+b′i,α)

)
· χρ

(
n∑
i=1

ai(v
′)αi

)
χρ(αi).

(22)

This concludes the proof. �

4. Genus 0 Gromov-Witten theory

In this Section we study Gromov-Witten theory of a toric gerbe X(Σ) over a
toric Deligne-Mumford stack X(Σ′). Our main result is an explicit comparison of
Gromov-Witten theory of X(Σ) and that of X(Σ′), which can be interpreted as a
Gromov-Witten theoretic version of the decomposition conjecture. The main tool
is a detailed calculation of Gromov-Witten invariants of toric stacks [10].

4.1. Genus zero Gromov-Witten invariants of toric stacks. In this subsec-
tion we present a summary of the results of [10]. Consider a toric Deligne-Mumford
stack X(Σ) defined by a stacky fan (N,Σ, β : Zn → N). As in Section 2.1, the
fan map β : Zn → N is given by elements {b1, ..., bn} ⊂ N . In other words, let
ei, 1 ≤ i ≤ n be the standard basis of Zn. Then β(ei) = bi.

Let

S := {sj |1 ≤ j ≤ m} ⊂ N
be a subset of N . The S-extended stacky fan (see [19]) is given by the same group
N , the same fan Σ, and the following fan map

(23) βS : Zn+m → N ; ei 7→ bi, 1 ≤ i ≤ n, e′j 7→ sj , 1 ≤ j ≤ m.

Here we write Zn+m = Zn ⊕ Zm and let {ei|1 ≤ i ≤ n} be the standard basis of
Zn, and let {e′j |1 ≤ j ≤ m} be the standard basis of Zm. It is known [19] that the
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stack associated to the S-extended stacky fan (N,Σ, βS) is isomorphic to the stack
X(Σ).

Let LS be the kernel of βS : Zn+m → N . Applying Gale duality to the S-
extended fan sequence 0 → LS → Zn+m → N give s the S-extended divisor se-
quence,

0→ N∗ → (Z∗)n+m → LS∨.

If σ is a cone of Σ. Define

CSσ :=

 ∑
1≤i≤n,ei /∈σ

riD
S(e∗i ) +

∑
j

r′jD
S(e∗′j)|ri, r′j ≥ 0

 ⊂ LS∨.

Put NESσ := CS∨σ . Define the S-extended Mori cone to be NES(X(Σ)) :=
∑
σ∈Σ NESσ .

We next introduce a number of combinatorial objects associated to the S-extended
stacky fan. Let σ be a cone of Σ. Denote by ΛSσ ⊂ LSQ the subset consisting of
elements

λ =

n∑
i=1

λiei +

m∑
j=1

λ′je
′
j ∈ Qn+m

such that λ′j ∈ Z, 1 ≤ j ≤ m and λi ∈ Z if ej /∈ σ. Set ΛS := ∪σ∈ΣΛSσ .
Define the (outgoing) reduction function to be

(24) vS : ΛS → Box(X(Σ)), vS(λ) :=

n∑
i=1

dλiebi +

m∑
j=1

dλ′jesj .

Now we define

ΛES(X(Σ)) := ΛS ∩NES(X(Σ)),

ΛESv := {λ ∈ ΛES(X(Σ))|vS(λ) = v}.
(25)

We can now write down the S-extended I-function of X(Σ):

ISX(Σ)(Q, t, z) := ze
∑n
i=1 y

bi logQi
z

∑
v∈Box(X(Σ))

∑
λ∈ΛESv

n∏
i=1

Qλii

m∏
j=1

t
λ′j
j y

v×

×
n∏
i=1

∏
〈b〉=vi,b≤0(ybi + bz)∏
〈b〉=vi,b≤λi(y

bi + bz)

m∏
j=1

∏
b≤0(bz)∏
b≤λ′j

(bz)
.

(26)

Here for v ∈ Box(X(Σ)), we write v̄ =
∑
i vib̄i.

One of the main results of [10] is the following

Theorem 4.1. The extended I-function ISX(Σ) is contained in the Lagrangian cone

LX(Σ).

For a suitable choice of S, it is easy to check that the S-extended I-function
ISX(Σ) is a slice of the cone LX(Σ) transverse to the ruling. We can then use ISX(Σ)

to determine the whole cone LX(Σ), hence the full genus 0 Gromov-Witten theory
of X(Σ).
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4.2. Comparison of genus zero invariants. In this subsection we apply the
results of [10] to toric gerbes. Consider the toric gerbe (1) defined by the morphism
Σ → Σ′ of stacky fans as in Section 2.1. Our strategy is to suitably choose the
extension set S for X(Σ) and S′ for X(Σ′), so that we can explicitly compare the

extended I-functions ISX(Σ) and IS
′

X(Σ′).

Let

S′ := {s′j |1 ≤ j ≤ m} ⊂ N ′

be a subset. We define an S′-extended fan map Zn+m → N ′ as follows. Write
Zn+m = Zn⊕Zm and let ei, 1 ≤ i ≤ n be the standard basis of Zn and e′j , 1 ≤ j ≤ m
the standard basis of Zm. The map Zn+m → N ′ is defined by

ei 7→ b′i, 1 ≤ i ≤ n; e′j 7→ s′j , 1 ≤ j ≤ m.

Define a subset of N = N ′ ⊕A by

S := {(s′j , α)|1 ≤ j ≤ m,α ∈ A} ⊂ N.

We define a S-extended fan map Zn+|A|m → N as follows. Write Zn+|A|m = Zn ⊕
Z|A|m and let ei, 1 ≤ i ≤ n be the standard basis of Zn and e′j,α, 1 ≤ j ≤ m,α ∈ A
the standard basis of Z|A|m. The map Zn+|A|m → N is defined by

ei 7→ bi, 1 ≤ i ≤ n; e′j,α 7→ (s′j , α), 1 ≤ j ≤ m,α ∈ A.

These extended fan maps fit into the following commutative diagram

Zn+|A|m −−−−→ Ny y
Zn+m −−−−→ N ′,

where the vertical map N → N ′ is the natural projection, and the vertical map
Zn+|A|m → Zn+m is given by

ei 7→ ei, 1 ≤ i ≤ n; e′j,α 7→ e′j , 1 ≤ j ≤ m,∀α ∈ A.

Let v′ ∈ Box(X(Σ′)) and a ∈ A, then (v′, a) ∈ N ′ ⊕ A = N is contained in
Box(X(Σ)). Let σ(v′) be the minimal cone containing v′. Write v̄′ =

∑
b′i∈σ(v′) vib̄

′
i

with vi ∈ Q.
An element λ ∈ ΛES(v′,a) is of the form

(27) λ =

n∑
i=1

λiei +

s∑
j=1

∑
α∈A

λj,αe
′
j,α ∈ LSQ

such that

(1) if ei is not in the minimal cone of v′, then λi ∈ Z;
(2) λj,α ∈ Z≥0.
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Following [10] the S-extended I-function of X(Σ) can be written as follows:

e−
∑n
i=1 y

bi logQi/zISX(Σ)(Q, t, z)

=z
∑

(v′,a)∈Box(X(Σ))

∑
λ∈ΛES

(v′,a)

n∏
i=1

Qλii

m∏
j=1

∏
α∈A

t
λj,α
j,α

× y(v′,a)
n∏
i=1

∏
〈b〉=vi,b≤0(ybi + bz)∏
〈b〉=vi,b≤λi(y

bi + bz)

m∏
j=1

∏
α∈A

1∏λj,α
b=1 (bz)

=z
∑

(v′,a)∈Box(X(Σ))

∑
λ∈ΛES

(v′,a)

n∏
i=1

Qλii

m∏
j=1

∏
α∈A

t
λj,α
j,α

∑
ρ∈Â

χρ(a)yv
′,ρχρ(−

n∑
i=1

ai(v
′)αi)

 n∏
i=1

∏
〈b〉=vi,b≤0(ybi + bz)∏
〈b〉=vi,b≤λi(y

bi + bz)

m∏
j=1

∏
α∈A

1

λj,α!zλj,α

=z
∑

(v′,a)∈Box(X(Σ))

∑
λ∈ΛES

(v′,a)

n∏
i=1

Qλii

m∏
j=1

∏
α∈A

1

λj,α!

(
tj,α
z

)λj,α
∑
ρ∈Â

χρ(a)yv
′,ρχρ(−

n∑
i=1

ai(v
′)αi)

 n∏
i=1

∏
〈b〉=vi,b≤0(ybi + bz)∏
〈b〉=vi,b≤λi(y

bi + bz)

=
∑
ρ∈Â

z ∑
v′∈Box(X(Σ′)),a∈A

∑
λ∈ΛES

(v′,a)

n∏
i=1

Qλii

m∏
j=1

∏
α∈A

1

λj,α!

(
tj,α
z

)λj,α

×χρ(a)χρ(−
n∑
i=1

ai(v
′)αi)y

v′,ρ

∏
〈b〉=vi,b≤0(ybi + bz)∏
〈b〉=vi,b≤λi(y

bi + bz)

)
,

(28)

where we have used the substitution

(29) y(v′,a) =
∑
ρ∈Â

χρ(a)yv
′,ρχρ(−

n∑
i=1

ai(v
′)αi)

obtained by inverting (7).
Since λ ∈ ΛES(v′,a), we have

(30) a =

n∑
i=1

dλieαi +
∑
α∈A

(

m∑
j=1

dλj,αe)α; v′ =

n∑
i=1

dλieb′i +

m∑
j=1

(
∑
α∈A
dλj,αe)s′j .

Note that

(31) v̄′ =

n∑
i=1

dλieb̄′i +

m∑
j=1

(
∑
α∈A
dλj,αe)s̄′j =

n∑
i=1

〈−λi〉 b̄′i.

Since by definition

v̄′ =
∑

b̄i∈σ(v̄′)

ai(v
′)b̄′i,
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we have
ai(v

′) = 〈−λi〉 .
We compute

a−
n∑
i=1

ai(v
′)αi =

n∑
i=1

(dλie − 〈−λi〉)αi +
∑
α∈A

(

m∑
j=1

dλj,αe)α

=

n∑
i=1

λiαi +
∑
α∈A

(

m∑
j=1

λj,α)α.

(32)

So
n∏
i=1

Qλii

m∏
j=1

∏
α∈A

1

λj,α!

(
tj,α
z

)λj,α
χρ(a)χρ(−

n∑
i=1

ai(v
′)αi)

=

n∏
i=1

(Qiχρ(αi))
λi

m∏
j=1

∏
α∈A

1

λj,α!

(
tj,αχρ(α)

z

)λj,α
.

(33)

This allows us to rewrite the last expression of (28) as∑
ρ∈Â

z
∑

v′∈Box(X(Σ′)),a∈A

∑
λ∈ΛES

(v′,a)

n∏
i=1

(Qiχρ(αi))
λi×

×
m∏
j=1

∏
α∈A

1

λj,α!

(
tj,αχρ(α)

z

)λj,α
yv
′,ρ

∏
〈b〉=vi,b≤0(ybi + bz)∏
〈b〉=vi,b≤λi(y

bi + bz)
.

(34)

Now we fix a representation ρ ∈ Â and consider the summand

z
∑

v′∈Box(X(Σ′)),a∈A

∑
λ∈ΛES

(v′,a)

n∏
i=1

(Qiχρ(αi))
λi×

×
m∏
j=1

∏
α∈A

1

λj,α!

(
tj,αχρ(α)

z

)λj,α
yv
′,ρ

∏
〈b〉=vi,b≤0(ybi + bz)∏
〈b〉=vi,b≤λi(y

bi + bz)
.

(35)

Given λ ∈ ΛES(v′,a) as in (27), by (30), we have

(36)

n∑
i=1

λiei +

m∑
j=1

(
∑
α∈A

λj,α)e′j ∈ ΛES
′

v′ ⊂ LS
′

Q .

Denote a general element λ′ ∈ ΛES
′

v′ by λ′ =
∑n
i=1 λiei +

∑m
j=1 λ

′
je
′
j . Note that in

(35) we sum over all elements of A. Also note that by Lemma 3.6,

yv
′,ρ · ybi = yv

′,ρ · yb
′
i,ρ.

Thus (35) can be written as

z
∑

v′∈Box(X(Σ′))

∑
λ′∈ΛES

′
v′

n∏
i=1

(Qiχρ(αi))
λi

∑
λj,α∈Z≥0,λ

′
j=

∑
α∈A λj,α

m∏
j=1

∏
α∈A

1

λj,α!

(
tj,αχρ(α)

z

)λj,α
yv
′,ρ

∏
〈b〉=vi,b≤0(yb

′
i,ρ + bz)∏

〈b〉=vi,b≤λi(y
b′i,ρ + bz)

.

(37)
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Applying the polynomial theorem to one j at a time, we find that (37) is equal to

z
∑

v′∈Box(X(Σ′))

∑
λ′∈ΛES

′
v′

n∏
i=1

(Qiχρ(αi))
λi

m∏
j=1

1

λ′j !

(∑
α∈A tj,αχρ(α)

z

)λ′j
yv
′,ρ×

×
∏
〈b〉=vi,b≤0(yb

′
i,ρ + bz)∏

〈b〉=vi,b≤λi(y
b′i,ρ + bz)

.

(38)

By the change of variables

(39) tj,ρ = (
∑
α∈A

tj,αχρ(α))χρ(−
n∑
i=1

ai(s
′
j)αi),

we may rewrite (38) as

z
∑

v′∈Box(X(Σ′))

∑
λ′∈ΛES

′
v′

n∏
i=1

(Qiχρ(αi))
λi

m∏
j=1

1

λ′j !

(
tj,ρχρ(

∑n
i=1 ai(s

′
j)αi)

z

)λ′j
yv
′,ρ×

×
∏
〈b〉=vi,b≤0(yb

′
i,ρ + bz)∏

〈b〉=vi,b≤λi(y
b′i,ρ + bz)

=z
∑

v′∈Box(X(Σ′))

∑
λ′∈ΛES

′
v′

n∏
i=1

(Qiχρ(αi))
λi

m∏
j=1

(
tj,ρχρ(

n∑
i=1

ai(s
′
j)αi)

)λ′j
yv
′,ρ×

×
∏
〈b〉=vi,b≤0(yb

′
i,ρ + bz)∏

〈b〉=vi,b≤λi(y
b′i,ρ + bz)

m∏
j=1

1

λ′j !z
λ′j
.

(40)

Note that this is the S′-extended I-function of X(Σ′) under the change of variables,

e−
∑n
i=1 y

b′i,ρ log(Qiχρ(αi))IS
′

X(Σ′)({Qiχρ(αi)}, {tj,ρχρ(
n∑
i=1

ai(s
′
j)αi)}, z).

Again by Lemma 3.6, we have

e
∑n
i=1 y

bi logQi/z · yv
′,ρ = e

∑n
i=1 y

b′i,ρ logQi/z · yv
′,ρ

=e−
∑n
i=1 y

b′i,ρ log(χρ(αi))/ze
∑n
i=1 y

b′i,ρ log(Qiχρ(αi))/z · yv
′,ρ.

(41)

Thus we obtain

Theorem 4.2.

ISX(Σ)(Q, t, z)

=
∑
ρ∈Â

e−
∑n
i=1 y

b′i,ρ log(χρ(αi))/zIS
′

X(Σ′)({Qiχρ(αi)}, {tj,ρχρ(
n∑
i=1

ai(s
′
j)αi)}, z).

(42)

Now we take S′ ⊂ N ′ to contain the closed box Box(Σ′). Since Box(Σ) =
Box(Σ′) × A, we see that the set S ⊂ N contains Box(Σ). By Theorem 4.1, this
choice implies the following

(1) t 7→ ISX(Σ)(Q, t, z) is a family (of dimension ≥ H∗CR(X(Σ),C)) of elements

of the Lagrangian cone LX(Σ) which is transverse to the ruling.
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(2) t 7→ IS
′

X(Σ′)(Q, t, z) is a family (of dimension ≥ H∗CR(X(Σ′),C)) of elements

of the Lagrangian cone LX(Σ′) which is transverse to the ruling.

The main point here is that, since these families have high enough dimensions,
they can used to reconstruct the whole Lagrangian cones within the relevant sym-
plectic vector spaces. Namely t 7→ ISX(Σ)(Q, t, z) reconstructs the Lagrangian cone

LX(Σ) ⊂ HX(Σ), and the family t 7→ IS
′

X(Σ′)({Qiχρ(αi)}, {tj,ρχρ(
∑n
i=1 ai(s

′
j)αi)}, z)

reconstructs the Lagrangian cone LX(Σ′),ρ|Qi 7→Qiχρ(αi) ⊂ HX(Σ′),ρ|Qi 7→Qiχρ(αi).

By divisor equation, the operator e
∑n
i=1 y

b′i,ρ log(χρ(αi))/z does the rescaling Qi 7→
Qiχρ(αi) for the ground ring Λnov(X(Σ′)). In other words, e

∑n
i=1 y

b′i,ρ log(χρ(αi))/z

identifies HX(Σ′),ρ with HX(Σ′),ρ|Qi 7→Qiχρ(αi). Now Theorem 4.2 implies

Theorem 4.3. The map (20) together with the rescaling Qi 7→ Qiχρ(αi), 1 ≤ i ≤ n
identifies the direct sum of Lagrangian cones

⊕
[ρ]∈Â LX(Σ′),ρ with the Lagrangian

cone LX(Σ)|Qi 7→Qiχρ(αi).

Recall that the J-function JX(t,−z) can be obtained as the intersection of the
Lagrangian cone LX and the affine space−z+t+HX

+. Thus it follows from Theorems
3.5 and 4.3 that

JX(Σ)({Qi}, {tj,α}, z)

=
1

|A|2
∑
ρ∈Â

e−
∑n
i=1 y

b′i,ρ log(χρ(αi))/zJX(Σ′)({Qiχρ(αi)}, {tj,ρ}, z).(43)

Here the factor 1/|A|2 accounts for the fact that we use the scaled orbifold Poincaré

pairing 1
|A|2 (−,−)

X(Σ′)
orb . In fact more is true. As explained in [13, Section 2],

the Frobenius structure defined by the genus 0 Gromov-Witten theory of X(Σ) is

determined by the Lagrangian cone LX(Σ) and the subspace HX(Σ)
+ (and similarly

for the Frobenius structure defined by genus 0 Gromov-Witten theory of X(Σ′)).
We thus deduce the following

Theorem 4.4. The additive isomorphism (9) together with the identifications Qi 7→
Qiχρ(αi) give an isomorphism of Frobenius structures⊕

[ρ]∈Â

(QH∗orb(X(Σ),Λnov(X(Σ′))),
1

|A|2
(−,−)

X(Σ′)
orb )

' (QH∗orb(X(Σ),Λnov(X(Σ))), (−,−)
X(Σ)
orb ).

(44)

This in particular implies that the additive isomorphism (9) together with the
identifications Qi 7→ Qiχρ(αi) give an isomorphism of quantum cohomology rings.

Example 4.5. We illustrate the aforementioned isomorphism of quantum coho-
mology rings in the example P(4, 6)→ P(2, 3).

It is easy to check that P(4, 6) → P(2, 3) is the µ2-gerbe obtained as the stack
of square roots of OP(2,3)(1). In [2] the quantum cohomology rings of P(4, 6) and
P(2, 3) (and more generally all weighted projective lines) are computed:

QH∗orb(P(2, 3),C) ' C[[q]][x, y]/(xy − q, 2x2 − 3y3),

QH∗orb(P(4, 6),C) ' C[[q]][u, v, ξ]/(uv − qξ, 2u2ξ − 3v3, ξ2 − 1).
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For i = 0, 1 let QH∗orb(P(2, 3),C)i be a copy of QH∗orb(P(2, 3),C) with generators
xi, yi and q rescaled by (−1)i:

QH∗orb(P(2, 3),C)i = C[[q]][xi, yi]/(xiyi − (−1)iq, 2x2
i − 3y3

i ).

Let 10 := 1
2 (1+ξ),11 := 1

2 (1−ξ) and ui := (−1)iu1i, vi := (−1)iv1i. Then it is easy

to check that the additive basis {1i, ui, vi, v2
i |i = 0, 1} determines an isomorphism

of algebras:

QH∗orb(P(4, 6),C) ' QH∗orb(P(2, 3),C)0 ⊕QH∗orb(P(2, 3),C)1,

1i 7→ 1 ∈ QH∗orb(P(2, 3),C)i, ui 7→ xi, vi 7→ yi.

For instance,

1011 =
1

4
(1− ξ2) = 0, 1010 =

1

2
(1 + ξ) = 10, 1111 = 11,

u0v1 = 0, u1v0 = 0,

u0v0 =
1

2
(uv + uvξ) = uv10 = qξ10 = q10,

u1v1 =
1

2
(uv − uvξ) = uv

1

2
(1− ξ) = qξ

1

2
(1− ξ) = q

1

2
(ξ − 1) = −q11,

2u2
i = 2u21i = 3v3ξ1i = 3v3(−1)i1i = 3v3

i , i = 0, 1.

Remark 4.6. It is natural to ask for a generalization of our results to higher
genus Gromov-Witten theory. One way to do this is as follows. First, By The-
orem 4.4, we can identify the Frobenius structure of X(Σ) with a direct sum of
the Frobenius structure of X(Σ′) (with a scaled pairing). By the results of [10],
the Frobenius structure defined by the genus 0 Gromov-Witten theory of a toric
Deligne-Mumford stack is generically semi-simple. By the theory of Givental [15],
higher genus Gromov-Witten invariants of toric Deligne-Mumford stacks can be re-
constructed from the Frobenius structures. We may then deduce results on higher
genus ancestor Gromov-Witten invariants of a toric gerbe (1) by applying this re-
construction procedure to both sides of Theorem 4.4. We will not spell out the
details here.
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